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Fig. 2 | COVID-19-related assays. a, Assays are categorized as in vitro cell-free molecular and biochemical, pseudotyped virus and live virus assays.
Pseudotyped virus experiments are exemplified by pseudotyped vesicular stornatitis virus (VSV) harbouring envelope glycopratein {VSV-G) and

SARS-CoV-5-gp chimeras. At 16 h after inocufation, the pseudotyped viral entry is analysed by determining luciferase activity in celf lysates™s. VSV with
deletion of the envelope glycoprotein (VSVAG) is used for normalization. b, Assays can be animal models, 2D monolayer cell culture, 21 ALt Transwell

cutture or 3D organoids. The combination of platforms empowers the utility of
extracellular matrix.

cell types exist for clinical and experimental coronavirus research,
all of which have benefits and limitations (Fig. 2b}. Here we focus
on the three major systems used to study COVID-19: 2D monelayer
cell culture, adapted 2D air-liquid interface (ALI) methods, and 3D
culture or organoids {Fig. 2b).

2D monolayer culture, 2D monolayer cell cultures (Fig. 2b) of vari-
ous cefl lines, such as 293 T, A549, BHK, Caco-2, MDBK, PK-15 and
Vero cells (available from the American Type Culture Collection)
have been used to investigate SARS-CoV-2 cell entry and for drug
testing'*. TMPRSS2-expressing Vero-E6 cells, which have a simi-
lar ACE2 structure to that of human cells, are highly susceptible
to SARS-CoV-2 infection™® and represent an effective culture
method to propagate SARS-CoV-2 and measure the viral load of
SARS-CoV-2 variants.

ALI assays. ALI culture mimics the in vivo airway environment
and is widely used to investigate the maturation and for functional
assessment of the airway epithelium®. ALl assays enable the api-
cal side of the epithelium to contact the air and the basolateral
side to access the differentiation medium through a micraporous

these assays for COVID-19 drug and vaccine development, ECM,

membrane (Fig, 2b). Two-dimensional ALI is particularly suitable
to evaluate links between related airborne lung disease pathologies
and susceptibility to severe SARS-CoV-2 infection', Limitations of
this method are an inability to passage the culture, which means
that it cannot be scaled up and used in high-throughput assays,
and its inability to generate more complex tissue siructures, such
as alveoli. Historically, growth and differentiation of respiratory
basal cells in an AL culture has been challenging in the absence of
non-basal cells, For example, KRT5-GFP* basal cells of the mouse
trachea require a 500-fold excess of non-basal cells in ALI experi-
ments to achieve approximately 6% colony-forming efficiency™
{based on counting large colonies} at day 2i. Using an adapted
3D sphere-forming assay, Hogan and colleagues were able to seed
single KRT5-GFP* basal ceils of the mouse trachea in the absence
of stroma or non-basal cells*. This 3D culture adaptation leads
to a rapid formation of ‘tracheospheres’ within one week and a
sphere-forming efficiency that is comparable to ALI experiments
described above™™,

3D cell culture and organoids. Unlike 2D cell culture, 3D cell
culture ig an artificially created platform that mimics the in vivo
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ASC-derived organoids for COVID-19 research

The definition of ASCs varies in the scientific literature due to the
complexity of cellular properties, including cellular dynamics'™,
heterogeneity'* and plasticity™. In addition, it can be difficult to
distinguish ASCs from progenitor cells. In this Review, ASCs are
defined as rare, mostly quiescent, and multipotent cells found in
adult tissues. They are capable of long-term self-renewal, gener-
ate inteninediate cell types {progenitors) with limited self-renewal
potential, and ditferentiate into tissue-specific cells””, ASCs can
be isolated from the adult issue and maintained in cell culture

indefinitely if supplemented with appropriate microenvironments
and growth factors, ASCs and progenitors serve as valuable alterna-
tives to hPSCs, providing a source of fully mature cells for func-
tional analysis.

Intestinal and nasal organoids. Intestinal organoids and nasal
spheroids have been derived from donor biopsies and were previ-
ously used to predict drug responses in patients with cystic fibrosis™,
Differentiated enterocytes express ACE2 and TMPRSS2 (Fig. 4a) and
substantial titres of SARS-CoV-2 particles have also been detected
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in enterocytes of intestinal organoids'”. Transcriptomic analysis
indicated a strong viral response with enrichment of CXCL10 and
CXCL11 mRNAs", closely related to a cytokine storm. This study
supports the use of ASC organoids to study SARS-CoV-2 patho-
physiology in vitro,

Interestingly, the nasal mucosa also co-expresses high lev-
els of ACE2 and TMPRSS2"™ {Fig. 4a), consistent with the heavy
SARS-CoV-2 particle load in the nasal cavity of patients with
COVID-19. The nasal mucosa has a similar epithelial lining to that
of the upper respiratory airway, including secretory club cells and
basal stem cells"”. As nasal biopsies are minimally invasive com-
pared with intestinal or lung biopsies, nasal spheroids provide a
valuable resource and surrogate for lung organoids.

Lung organoids. Evidence suggests that both ASC-like cells and
progenitors exist in different compartments of the lungs. Basal cells
in the intermediate airways meet the definition of generic ASCs™%,
Basal stern cell organoids contain basal cells, secretory goblet cells
and ciliated cells (Fig. 3d,e). Airway basal stem cells have been iso-
lated from human biopsies and expanded for functional assays of
the airway repair response after SARS-CoV-2 infection',

ASC-like cells or progenitors have also been found within the
SCGB1A1* secretory club and AXIN2* AECII celt populations in
human adult lungs*™'™ (Fig. 3b.e). Mouse genetic-lineage analysis
revealed that surfactant protein C (SFTPC)-positive AECII celis in
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the alveolar niche are ASC-like cells, and give rise to self-renewing
‘alveolospheres” that contain both AECII and AECI-like cells'".
In mice, rare Axin2* AECIIs also act as alveolar stem cells and
secrete Wnt molecules to recruit ‘bulk’ AECIIs as the progeni-
tors'™. A distinct population of mouse ILIR1* AECIIs can beconte
damage-associated transient progenitors, which then differentiate
into mature AECIs'". In mouse and human lungs, similar alveolar
epithelial progenitors reside within the AECII pool and generate
mature AECIs and AECIIs {rom alveolar organoids'”, Thus, AEClls
constitute an important stern/progenitor source in the alveoli.
Human alveolar organoids have been derived from adult AECIIs
to assess SARS-CoV-2 infection' "+ These in vitro experi-
ments confirm that AECIs are the principal target of SARS-CoV-2,
SARS-CoV-2-infected alveolar organoids mirror many features
of patients with COVID-19, including cytokine release, IFN and
immune response, loss of surfactant proteins, and cell death,
AEClH-based organoids, derived in a feeder-free and chemically
defined culture system, could be sustained long-term'*? and revealed
that entry of few (1) SARS-CoV-2 particles into alveolar cells can
lead to a full infection. Genes associated with cell death, cell adhe-
sion, and surfactant proteins were also upregulated in SARS-CoV-
2-infected AECIIs'",
IFN-mediated inflammatory signalling is a typical response to the
SARS-CoV-2 infection documented in these studies. An increase in
the IFN response was associated with a lower SARS-CoV-2 burden
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